阎晶晶40张超逼真动态原理图带你彻底了解8大仪器-电镜网

    阎晶晶40张超逼真动态原理图带你彻底了解8大仪器-电镜网

    阎晶晶 点击上方「电镜网」快速关注
    中国电子显微镜学会、中国电镜网官方微信
    电镜网为中国电子显微镜学会官方微信公众平台,旨在促进显微学领域学术交流,发布电镜学会官方通知与信息,并选择性发布与学科相关的人文风情,地区发展介绍。
    转自科袖网
    来源:新材料在线第一大板块 材料电镜类
    材料的显微分析能获得材料的组织结构,揭示材料基本性质和基本规律,在材料测试技术中占重要的一环。对各种显微分析设备诸如SEM、TEM、AFM、STM等,各位材料届的小伙伴一定不会陌生。最近小编发现一些电镜动画,被惊艳到,原来枯燥无味的电镜可以变得这么生动,闲言少叙,下面就和大家一起来分享。
    扫描电子显微镜(SEM)
    扫描电镜成像是利用细聚焦高能电子束在样件表面激发各种物理信号,如二次电子、背散射电子等,通过相应的检测器来检测这些信号,信号的强度与样品表面形貌有一定的对应关系,因此,可将其转换为视频信号来调制显像管的亮度得到样品表面形貌的图像。

    SEM工作图
    入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。

    电子发射图

    二次电子探测图
    二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。

    二次电子扫描成像
    入射电子达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。

    背散射电子探测图
    用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。

    EBSD成像过程
    透射电子显微镜(TEM)
    透射电镜是把经加速和聚焦的电子束投射到非常薄的样件上,电子与样品中的原子碰撞,而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此,可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。

    TEM工作图

    TEM成像过程
    STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。

    STEM分析图
    入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。

    EELS原理图
    原子力显微镜(AFM)
    将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。测出微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。

    AFM原理:针尖与表面原子相互作用
    AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓;非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。

    接触模式

    动态模式
    扫描隧道显微镜(STM)
    隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。

    探针
    隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。

    隧道电流
    针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。



    STM扫描成像图
    单原子操纵:用探针把单个原子从表面提起而脱离表面束缚,横向移动到预定位置,再把原子从探针重新释放到表面上,可以获得原子级别的图案。


    移动原子作图
    第二大板块 四大波谱类
    红外图谱、质谱、核磁图谱和紫外图谱是四种常见且重要的分析仪器,科研人员对分析仪器的使用并不陌生,但是谈及其工作机理,大家未必熟悉。本文通过简单的动图解析红外图谱、质谱、核磁图谱和紫外图谱工作机理,给大家一个一目了然的机会。
    红外图谱(IR)
    近红外光谱仪由光源、单色器、探测器和计算机信息处理系统组成的测试仪器。红外吸收光谱是分子中成键原子振动能级跃迁而产生的吸收光谱,只有引起分子偶极矩变化的振动才能产生红外吸收。红外分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁;谱图的表示方法:相对透射光能量随透射光频率变化;提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。红外吸收光谱主要用于结构分析、定性鉴别及定量分析。
    分子的振动模式分为两种,即伸缩振动和变形振动,如图所示:

    亚甲基振动模式

    甲基振动模式

    红外光谱测试
    红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。
    红外分析的样品要求:1)、样品必须预先纯化,以保证有足够的纯度;2)、样品须预先除水干燥,避免损坏仪器,同时避免水峰对样品谱图的干扰;3)、易潮解的样品,请用户自备干燥器放置;4)、对易挥发、升华、对热不稳定的样品,请用带密封盖或塞子的容器盛装并盖紧,同时必须在样品分析任务单上注明;5)、对于有毒性和腐蚀性的样品,用户必须用密封容器装好。送样时必须分别在样品瓶标签的明显位置和分析任务单上注明。红外测试样品制备方法:1、固体样品:压片法、粉末法、薄膜法、糊剂法;2、液体样品:液体试样、液膜法。
    以下是甲醇红外光谱分析过程:



    甲醇红外光谱结构分析过程红外分析口诀:
    滑动查看更多内容
    红外可分远中近,中红特征指纹区,
    1300来分界,注意横轴划分异。
    看图要知红外仪,弄清物态液固气。
    样品来源制样法,物化性能多联系。
    识图先学饱和烃,三千以下看峰形。
    2960、2870是甲基,2930、2850亚甲峰。
    1470碳氢弯,1380甲基显。
    二个甲基同一碳,1380分二半。
    面内摇摆720,长链亚甲亦可辨。
    烯氢伸展过三千,排除倍频和卤烷。
    末端烯烃此峰强,只有一氢不明显。
    化合物,有键偏,~1650会出现。
    烯氢面外易变形,1000以下有强峰。
    910端基氢,再有一氢990。
    顺式二氢690,反式移至970;
    单氢出峰820,干扰顺式难确定。
    炔氢伸展三千三,峰强很大峰形尖。
    三键伸展二千二,炔氢摇摆六百八。
    芳烃呼吸很特征,1600~1430。
    1650~2000,取代方式区分明。
    900~650,面外弯曲定芳氢。
    五氢吸收有两峰,700和750;
    四氢只有750,二氢相邻830;
    间二取代出三峰,700、780,880处孤立氢
    醇酚羟基易缔合,三千三处有强峰。
    C-O伸展吸收大,伯仲叔醇位不同。
    1050伯醇显,1100乃是仲,
    1150叔醇在,1230才是酚。
    1110醚链伸,注意排除酯酸醇。
    若与π键紧相连,二个吸收要看准,
    1050对称峰,1250反对称。
    苯环若有甲氧基,碳氢伸展2820。
    次甲基二氧连苯环,930处有强峰,
    环氧乙烷有三峰,1260环振动,
    九百上下反对称,八百左右最特征。
    缩醛酮,特殊醚,1110非缩酮。
    酸酐也有C-O键,开链环酐有区别,
    开链强宽一千一,环酐移至1250。
    羰基伸展一千七,2720定醛基。
    吸电效应波数高,共轭则向低频移。
    张力促使振动快,环外双键可类比。
    二千五到三千三,羧酸氢键峰形宽,
    920,钝峰显,羧基可定二聚酸、
    酸酐千八来偶合,双峰60严相隔,
    链状酸酐高频强,环状酸酐高频弱。
    羧酸盐,偶合生,羰基伸缩出双峰,
    1600反对称,1400对称峰。
    1740酯羰基,何酸可看碳氧展。
    1180甲酸酯,1190是丙酸,
    1220乙酸酯,1250芳香酸。
    1600兔耳峰,常为邻苯二甲酸。
    氮氢伸展三千四,每氢一峰很分明。
    羰基伸展酰胺I,1660有强峰;
    N-H变形酰胺II,1600分伯仲。
    伯胺频高易重叠,仲酰固态1550;
    碳氮伸展酰胺III,1400强峰显。
    胺尖常有干扰见,N-H伸展三千三,
    叔胺无峰仲胺单,伯胺双峰小而尖。
    1600碳氢弯,芳香仲胺千五偏。
    八百左右面内摇,确定最好变成盐。
    伸展弯曲互靠近,伯胺盐三千强峰宽,
    仲胺盐、叔胺盐,2700上下可分辨,
    亚胺盐,更可怜,2000左右才可见。
    硝基伸缩吸收大,相连基团可弄清。
    1350、1500,分为对称反对称。
    氨基酸,成内盐,3100~2100峰形宽。
    1600、1400酸根展,1630、1510碳氢弯。
    盐酸盐,羧基显,钠盐蛋白三千三。
    矿物组成杂而乱,振动光谱远红端。
    钝盐类,较简单,吸收峰,少而宽。
    注意羟基水和铵,先记几种普通盐。
    1100是硫酸根,1380硝酸盐,
    1450碳酸根,一千左右看磷酸。
    硅酸盐,一峰宽,1000真壮观。
    勤学苦练多实践,红外识谱不算难。
    质谱(MS)
    质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离;谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化;提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息,可以用于测定相对分子质量、化合物分子式及结构式。
    质谱样品:适合分析相对分子质量为50~2000 μ的液体、固体有机化合物样品,试样应尽可能为纯净的单一组分。
    以下是FT-ICR质谱仪工作过程:

    离子产生

    离子收集

    离子传输
    FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。


    离子回旋运动

    傅立叶变换常见有机化合物的质谱:
    滑动查看更多内容
    1. 饱和脂肪烃
    a.直链烃
    直链烃显示弱的分子离子峰,
    ◆有m/z :M-29,29,43,57,71,…CnH2n+1系列峰(σ—断裂)
    ◆ 伴有m/z :27,41,55,69,…… CnH2n-1系列较弱峰
    b. 支链烃
    ◆分子离子峰丰度降低
    c. 环烷烃
    ◆分子离子峰强度增加,会出现m/z=41,55,56,69等系列碎片离子峰。
    ◆烷基取代的环烷烃易丢失烷基,优先失去最大基团,正电荷保留在环上。
    2. 烯烃
    容易发生烯丙基断裂,
    产生一系列27,41,55,69,…CnH2n-1峰,41常是基峰
    3. 芳烃
    分子离子峰强,易发生Cα-Cβ键的裂解,生成的苄基m/z91是基峰。正构烷基取代链越长,m/z91丰度越大。
    若基峰比91大14n,表明苯环α碳上另有烷基取代。
    会出现39,51,65,77,91,105,119,…等一系列峰。
    侧链含γ-H的会产生重排离子峰,m/z=92
    4. 醇和酚
    醇的分子离子峰往往观察不到,M-H有时可以观察到
    饱和醇羟基的Cα-Cβ键易发生断裂,产生(31+14n)特征系列离子峰,伯醇的m/z31较强。
    开链伯醇还可能发生麦氏重排,同时脱水和脱烯(M-18-28)。
    酚的分子离子峰较强,出现(M-28)(-CO),(M-29)(-CHO)峰。
    5. 醛、酮
    直链醛、酮显示有CnH2n+1CO为通式的特征离子系列峰,如m/z 29、43、57 ……等 。
    6. 羧酸
    脂肪羧酸的分子离子峰很弱,m/z 60是丁酸以上α-碳原子上没有支链的脂肪羧酸最特征的离子峰,由麦氏重排裂解产生 ;
    低级脂肪酸还常有M-17(失去OH)、M-18(失去H2O)、M-45(失去CO2H)的离子峰。
    7. 酯
    羧酸酯进行α-裂解所产生(M-R)或(M-OR)的离子常成为质谱图中的强峰(有时为基峰)。
    核磁共振谱(NMR)
    在外加磁场的作用下,自旋核吸收电磁波的能量后从低自旋能级跃迁到高自旋能级,所得到的的吸收图谱为核磁共振谱。核磁光谱分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁;谱图的表示方法:吸收光能量随化学位移的变化;提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息,可用于研究分子结构、构型构象、分子动态等。
    核磁样品要求:1)、送检样品纯度一般应>95%,无铁屑、灰尘、滤纸毛等杂质。一般有机物须提供的样品量:1H谱>5mg,13C谱>15mg,对聚合物所需的样品量应适当增加;2)、本仪器配置仅能进行液体样品分析,要求样品在某种氘代溶剂中有良好的溶解性能,送样者应先选好所用溶剂。本室常备的氘代溶剂有氯仿、重水、甲醇、丙酮、DMSO、苯、邻二氯苯、乙腈、吡啶、醋酸、三氟乙酸;3)、请送样者尽量提供样品的可能结构或来源。如有特殊要求(如,检测温度、谱宽等)请于说明。
    以下是NMR仪工作过程(Bruker 950 US2):

    NMR结构

    进样

    样品在磁场中
    当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。



    核磁共振及数据输出常见氢谱化学位移值范围:
    滑动查看更多内容
    醛氢9-10.5 ppm
    芳环及苯环6-9.5 ppm
    烯氢4.5-7.5 ppm
    与氧原子相连的氢3.0-5.5ppm
    与氮原子相连的氢2.0-3.5ppm
    炔氢1.6-3.4 ppm
    脂肪氢0-2.5 ppm
    活泼氢:醇类0.5-5.5ppm
    酚类4.0-12.0 ppm
    酸类:9-13.0 ppm
    氨活泼氢:酰胺5-8.5ppm
    芳香氨 3.0-5.0ppm
    脂肪氨0.6-3.5 ppm。
    碳谱三大区:
    滑动查看更多内容
    ◆ 高δ值区δ>165 ppm,属于羰基和叠烯区:a.分子结构中,如存在叠峰,除叠烯中有高δ值信号峰外,叠烯两端碳在双键区域还应有信号峰,两种峰同时存在才说明叠烯存在;b.δ>190 ppm的信号,只能属于醛、酮类化合物;c.160-180 ppm的信号峰,则归属于酸、酯、酸酐等类化合物的羰基。
    ◆中δ值区δ 90-160 ppm(一般情况δ为100-150ppm)烯、芳环、除叠烯中央碳原子外的其他SP2杂化碳原子、碳氮三键碳原子都在这个区域出峰。
    ◆低δ值区δ<100 ppm,主要脂肪链碳原子区:a.与单个氧、氮、氟等杂原子相连的饱和的δ值一般处于55-95 ppm,不与氧、氮、氟等杂原子相连的饱和的δ值小于55 ppm;b.炔碳原子δ值在70-100ppm,这是不饱和碳原子的特例。
    紫外光谱(UV)
    物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫外吸收光谱分析原理:吸收紫外光能量,引起分子中电子能级的跃迁;谱图的表示方法:相对吸收光能量随吸收光波长的变化;提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息,主要用于测定共轭分子、组分及平衡常数。

    光线传输

    光衍射

    探测

    数据输出
    紫外光谱样品要求:1)、样品溶液的浓度必须适当,且必须清澈透明,不能有气泡或悬浮物质存在;2)、固体样品量>0.2g,液体样品量>2mL。常见有机化合物的紫外吸收光谱
    滑动查看更多内容
    1. 饱和烃
    饱和单键碳氢化合物只有σ电子,因而只能产生σ→σ*跃迁。由于σ电子最不容易激发,需要吸收很大的能量,才能产生σ→σ*跃迁,因而这类化合物在200nm以上无吸收。所以它们在紫外光谱分析中常用作溶剂使用,如正已烷、环乙烷、庚烷等。
    2.不饱和脂肪烃
    ◆含孤立不饱和键的烃类化合物。具有孤立双键或三键的烯烃或炔烃,它们都产生π→π*跃迁,但多数在200nm以上无吸收。如已烯吸收峰在171nm,乙炔吸收峰在173nm,丁烯在178nm。若烯分子中氢被助色团如-OH、-NH2、-Cl等取代时,吸收峰发生红移,吸收强度也有所增加。
    ◆含共轭体系的不饱和烃。具有共轭双键的化合物,相间的π键相互作用生成大π键,由于大π键各能级之间的距离较近,电子易被激发,所以产生了K吸收带,其吸收峰一般在217~280nm。K吸收带的波长及长度与共轭体系的长短、位置、取代基种类等有关,共轭双键越多,波长越长,甚至出现颜色。因此可据此判断共轭体系的存在情况。
    ◆芳香化合物。苯的紫外吸收光谱是由π→π*跃迁组成的三个谱带,即E1、E2、具有精细结构的B吸收带。当苯环上引入取代苯时,E2吸收带和B吸收带一般产生红移且强度加强。稠环芳烃母体吸收带的最大吸收波长大于苯,这是由于它有两个或两个以上共轭的苯环,苯环数目越多,λmax越大。例如苯(255nm)和萘(275nm)均为无色,而并四苯为橙色,吸收峰波长在460nm。并五苯为紫色,吸收峰波长为580nm。
    ◆杂环化合物。在杂环化合物中,只有不饱和的杂环化合物在近紫外区才有吸收。以O、S或NH取代